Extending Piecewise Polynomial Functions in Two Variables

نویسنده

  • ANDREAS FISCHER
چکیده

We study the extensibility of piecewise polynomial functions defined on closed subsets of R2 to all of R2. The compact subsets of R2 on which every piecewise polynomial function is extensible to R2 can be characterized in terms of local quasi-convexity if they are definable in an o-minimal expansion of R. Even the noncompact closed definable subsets can be characterized if semialgebraic function germs at infinity are dense in the Hardy field of definable germs. We also present a piecewise polynomial function defined on a compact, convex, but undefinable subset of R2 which is not extensible to R2. RÉSUMÉ. Nous étudions l’extensibilité des fonctions polynôme par morceaux définie sur des sous-ensembles fermés de R2 à tout de R2. La sous-ensembles compacts de R2 sur lequel chaque fonction polynôme par morceaux est extensible à R2 peut être caractérisé en termes de quasi-convexité locaux si elles sont définissables dans une expansion o-minimale de R. Même les sous-ensembles non compactes fermés définissables peut être caractérisée si les germes de fonctions semialgébrique á l’infini sont denses dans le corps de Hardy des germes définissables. Nous présentons également une fonction polynôme par morceaux définie sur un sous-ensemble compact, convexe, mais indéfinissable de R2, ce qui n’est pas extensible á R2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

On the Construction of Separable-Variables Conductivity Functions, and Their Application for Approaching Numerical Solutions of the Two-Dimensional Electrical Impedance Equation

We analyze a technique for obtaining piecewise separable-variables conductivity functions, employing standard cubic polynomial interpolation. Our goal is to start making possible the practical use of the Pseudoanalytic Function Theory in medical imaging, by allowing the construction of numerical solutions, in terms of Taylor series in formal powers, of the twodimensional Electrical Impedance Eq...

متن کامل

HYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion

متن کامل

Predicting the Efficiency of Decision-Making Unit by Using Piecewise Polynomial Extrapolation in Different Times

In this article, we will estimate efficiency amountof decision-making unit by offering the continuous piecewise polynomialextrapolation and interpolation by CCR model input-oriented on the assumptionthat it is constant returns to scale in different times. And finally, we willestimate efficiency amount of decision-making unit indifferent times byoffering an example.

متن کامل

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009